

Christopher R. Stultz CONSTRUCTION MANAGEMENT 2009 SENIOR THESIS PRESENTATION THE PENNSYLVANIA STATE UNIVERSITY

- Creating Sustainability in Crystal City
 - 1. Crystal Plaza II Overview
 - 2. Consolidation of Slab Penetrations
 - 3. Building Integrated Solar Energy System
 - Design considerations, technology, energy results
 - 4. Peak Demand Shift and Demand Response Programs
 - Background, local programs, generator use, results
 - 5. Financing Projects through Energy Savings
 - Goals, incentives/rebates
 - 6. Conclusion and Questions

- Project background, challenges, site, and team
- Structural conditions, resolutions, recommendations

Creating Sustainability in Crystal City

1. Crystal Plaza II Overview

- Project background, challenges, site, and team
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Crystal Plaza II Overview

Location

220 20th Street Arlington VA

Creating Sustainability in Crystal City 1. Crystal Plaza II Overview

- Project background, challenges, site, and team
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Building History

- Originally 12 story office in commercial complex that featured similar designs and architecture
- Constructed in 1969 by Robert H Smith Group
- Now owned by Vornado/Charles E. Smith
- Originally to be demolished
- Renovation into266 unit apartment complex •
- Increase from 12 to 20 stories
- Part of changing Crystal City

Crystal Plaza II Overview

Location

220 20th Street Arlington VA

Creating Sustainability in Crystal City

1. Crystal Plaza II Overview

- Project background, challenges, site, and team
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Crystal Plaza II Overview

Constructability Challenges

Renovation

• Required Delivery

Reconfiguration

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
 - Project background, challenges, site, and team
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

- Renovation
 - 40 year old structure • Deficiencies Unforeseen Conditions

Crystal Plaza II Overview

Constructability Challenges

Renovation

Required Delivery

Reconfiguration

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
 - Project background, challenges, site, and team
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

- Required Delivery

 - Multi phase delivery Multiple inspections • Life Safety equipment

Crystal Plaza II Overview

Constructability Challenges

Renovation

Required Delivery

Reconfiguration

Creating Sustainability in Crystal City

1. Crystal Plaza II Overview

- Project background, challenges, site, and team
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

- Reconfiguration • More decentralized • More slab penetrations • Structural Integrity

Crystal Plaza II Overview

Constructability Challenges

Renovation

Required Delivery

Reconfiguration

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
 - Project background, challenges, site, and team
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

- Residential Curtain Wall • Weather proofing Mechanical systems

 - Lead time

Crystal Plaza II Overview

Constructability Challenges

Renovation

Required Delivery

Reconfiguration

Creating Sustainability in Crystal City	
1. Crystal Plaza II Overview	
 Project background, challenges, site, and team 	
2. Consolidation of Slab Penetrations	
3. Building Integrated Solar Energy System	
4. Peak Demand Shift and Demand Response Programs	
5. Financing Projects through Energy Savings	
6. Conclusion and Questions	

• Schedule

- Construction Critical Path Demolition
- - Concrete Structure
 - Façade/Dry-in
 - MEP Fit Out
 - Lobby Finishes

Crystal Plaza II Overview

• Important Dates

- Review/Issue Building Permit
 - March 15,2007
- FAA Approval
 - May 18, 2007
- Substantial Completion
 - August 31, 2009

18-20 Turnover/Occupa 8-26-2009 5-17 Turnover/Occupan 8-5-2009 2-14 Turnover/Occupa 7-22-2009 9-11 Turnover/Occupant 5-19-2009 6-8 Turnover/Occupancy 4-6-2009 3-5 Turnover/Occupand 3-2-2009 ****** -2 Turnover/Occupanc 20 1.00R 6-12-2009 LEVEL ILOOST

Creating Sustainability in Crystal City

1. Crystal Plaza II Overview

2.Consolidation of Slab Penetrations

- Structural conditions, resolutions, recommendations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

- Background
 - Change in use, commercial to residential • Increased slab penetrations through existing slab Coordination

 - Large Risk

Consolidation of Slab Penetrations

Problem Statement

- Constructability
- Schedule
- Cost
- Structural Integrity

• Goal

• Locate marginal and problematic areas to provide better information to the GC and MEP designers to mitigate risk.

Creating Sustainability in Crystal City

1. Crystal Plaza II Overview

2.Consolidation of Slab Penetrations

- Structural conditions, resolutions, recommendations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

- Research
 - Each bathroom has 3-9 penetrations, often 6-12 in group • GPR ineffective

 - Reinforcement

 - Carbon Fiber Reinforced Polymer (CFRP) • Large strength gains, minimal stiffness

Consolidation of Slab Penetrations

Problem Statement

- Constructability
- Schedule
- Cost
- Structural Integrity

• Goal

• Locate marginal and problematic areas to provide better information to the GC and MEP designers to mitigate risk.

Creating Sustainability in Crystal City

1. Crystal Plaza II Overview

2. Consolidation of Slab Penetrations

- Structural conditions, resolutions, recommendations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

- Research
 - Each bathroom has 3-9 penetrations, often 6-12 in group • GPR ineffective

 - Reinforcement

 - Carbon Fiber Reinforced Polymer (CFRP) • Large strength gains, minimal stiffness

- Constructability
 - Do first, check second
 - Rework
 - Coordination

Creating Sustainability in Crystal City
1. Crystal Plaza II Overview
2. Consolidation of Slab Penetrations
 Structural conditions, resolutions, recommendations
3. Building Integrated Solar Energy System
4. Peak Demand Shift and Demand Response Programs
5. Financing Projects through Energy Savings
6. Conclusion and Questions

- Schedule
 - Rough in of MEP and framing complete
 - CFRP
 - requires large lay down area • Takes 2-7 days to install
 - About a 3 week delay by process • Fireproofing
 - Overlooked
 - Postponed inspections
 - Rework of installed drywall
 - Delayed drywall 2 weeks

- Cost
 - CFRP
 - ~\$50/sf, 840 sf, \$42,000
 - Survey
 - \$30,000
 - GC Review of penetrations
 - \$8,000
 - Fireproofing
 - \$21,000
 - Rework \$25,000
 - Over \$120,000 for CFRP process

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
 - Structural conditions, resolutions, recommendations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Preconstruction Structural Analysis

- Look at single frame
- Uses direct design method to determine reinforcement requirements

Consolidation of Slab Penetrations

• Could be extended to entire slab

1. Crystal Plaza II Overview102. Consolidation of Slab Penetrations20• Structural conditions, resolutions, recommendations203. Building Integrated Solar Energy System10	00 ps
2.Consolidation of Slab Penetrations20• Structural conditions, resolutions, recommendations203. Building Integrated Solar Energy System10	
 Structural conditions, resolutions, recommendations 20 3. Building Integrated Solar Energy System 10 	0' X 2
3. Building Integrated Solar Energy System • 10	0" X 2
	o" sla
4. Peak Demand Shift and Demand Response Programs • 50	000 j
5. Financing Projects through Energy Savings • #4	4 reb
6. Conclusion and Questions	

Consolidation of Slab Penetrations

Use

- sf live load
- 20' bays
- 20" columns
- psi concrete (125 psf dl)
- ar

1. Crystal Plaza II Overview102. Consolidation of Slab Penetrations20• Structural conditions, resolutions, recommendations203. Building Integrated Solar Energy System10	00 ps
2.Consolidation of Slab Penetrations20• Structural conditions, resolutions, recommendations203. Building Integrated Solar Energy System10	
 Structural conditions, resolutions, recommendations 20 3. Building Integrated Solar Energy System 10 	0' X 2
3. Building Integrated Solar Energy System • 10	0" X 2
	o" sla
4. Peak Demand Shift and Demand Response Programs • 50	000 j
5. Financing Projects through Energy Savings • #4	4 reb
6. Conclusion and Questions	

Consolidation of Slab Penetrations

Use

- sf live load
- 20' bays
- 20" columns
- psi concrete (125 psf dl)
- Dar

Frame	Total Width (ft)	CS (ft)	MS (ft)	Total - Mom	CS (-M)	MS (-M)	Total + Mom	CS (+M)	MS (+M)					
А	20	10	10	-182.34	-136.76	-45.59	135.45	81.27	54.18					
D	10	10	5	E	-33.86	-33.86	0.00	67.73	40.64	27 00				
	10	J	5	-91.17	-68.38	-22.79	07.75		07.75	07.75	07.75	07.75	07.75	40.04
С	20	10	10	-182.34	-136.76	-45.59	135.45	81.27	54.18					
	10	F	F	-33.86	-33.86	0.00	67 72	10 61	27.00					
	10	5	5	-91.17	-68.38	-22.79	07.73	40.64	27.09					

Creating Sustainability in Crystal City

	For Fr	ame A Design Reinforcem
eating Sustainability in Crystal City	Item	Description
1. Crystal Plaza II Overview		
2. Consolidation of Slab Penetrations	1	M _u (ft-Kip)
Structural conditions resolutions recommendations	2	b (in)
o Puilding Intograted Solar Energy System	3	d(in) M. = M./0.9 (ft-Kip)
3. Dunung megrateu Solar Energy System		
4. Peak Demand Shift and Demand Response Programs	5	$R = M_n/bd^2$
5. Financing Projects through Energy Savings	6	o [Table A 5a]
6. Conclusion and Questions	7	Ast = ρ bd (in ²)
C C	8	A _{st,min} = 0.002bt
	9	N = #7 or #8 (Greater)/Ab
	10	Nmin = width _{strip} /2t
	* # Bar	s used is greater value of s

nent For CS (Will Use #4 Bars)						
	Span					
	M⁻	M+				
	-136.76	81.27				
	100	100				
	7.975	7.975				
	-151.95	90.30185				
	286.6957	170.3792				
	0.005	0.0028				
	3.9875	2.233				
	2	2				
bar	19.9375	11.165				
	6	6				
9 or 10						

For Frame A Design Reinforcement For MS (Will Use #4 Bars)					
ltem	Description	Span			
		M⁻	M+		
1	M _u (ft-Kip)	-45.59	54.18		
2	b (in)	100	100		
3	d(in)	7.975	7.975		
4	$M_n = M_u/0.9$ (ft-Kip)	-50.6501	60.20123		
5	$R = M_n/bd^2$	95.56524	113.5861		
6	ρ [Table A.5a]	0.0016	0.0019		
7	Ast = ρ bd (in ²)	1.276	1.51525		
8	A _{st,min} = 0.002bt	2	2		
9	N = #7 or #8 (Greater)/Abar	6.38	7.57625		
10	Nmin = width _{strip} /2t	6	6		
* # Bar	s used is greater value of 9 or 1	LO			

Frame	Total Width (ft)	CS (ft)	MS (ft)	Total - Mom	CS (-M)	MS (-M)	Total + Mom	CS (+M)	MS (+M)												
А	20	10	10	-182.34	-136.76	-45.59	135.45	81.27	54.18												
P	10	10	10	10	5	5	-33.86	-33.86	0.00	67 72	10.64	27 09									
	10		J	5		5	5	5	5	5	5	5	5	5	5	5 5	-91.17	-68.38	-22.79	07.75	40.04
С	20	10	10	-182.34	-136.76	-45.59	135.45	81.27	54.18												
	10	F	F	-33.86	-33.86	0.00	67 72	10.64	27.00												
	10	5 5	5	-91.17	-68.38	-22.79	07.73	40.64	27.09												

Creating Sustainability in Crystal City
1. Crystal Plaza II Overview
2. Consolidation of Slab Penetrations
Structural conditions, resolutions, recommendations
3. Building Integrated Solar Energy System
4. Peak Demand Shift and Demand Response Program
5. Financing Projects through Energy Savings
6. Conclusion and Questions

For Frame A Design Reinforcement For CS (Will Use #4 Bars)						
Item	Description Span					
		M⁻	M+			
1	M _u (ft-Kip)	-136.76	81.27			
2	b (in)	100	100			
3	d(in)	7.975	7.975			
4	M _n = M _u /0.9 (ft-Kip)	-151.95	90.30185			
5	$R = M_n/bd^2$	286.6957	170.3792			
6	ρ [Table A.5a]	0.005	0.0028			
7	Ast = ρbd (in²)	3.9875	2.233			
8	A _{st,min} = 0.002bt	2	2			
9	N = #7 or #8 (Greater)/Abar	19.9375	11.165			
10	Nmin = width _{strip} /2t 6					
* # Bars	* # Bars used is greater value of 9 or 10					

For Frame A Design Reinforcement For MS (Will Use #4 Bars)						
Item	Description	Span				
		M⁻	M+			
1	M _u (ft-Kip)	-45.59	54.18			
2	b (in)	100	100			
3	d(in)	7.975	7.975			
4	$M_n = M_u/0.9$ (ft-Kip)	-50.6501	60.20123			
5	$R = M_n/bd^2$	95.56524	113.5861			
6	ρ [Table A.5a]	0.0016	0.0019			
7	Ast = ρbd (in²)	1.276	1.51525			
8	A _{st,min} = 0.002bt	2	2			
9	N = #7 or #8 (Greater)/Abar	6.38	7.57625			
10	Nmin = width _{strip} /2t	6	6			
* # Bar	* # Bars used is greater value of 9 or 10					

Creating Sustainability in Crystal City	New Use
1. Crystal Plaza II Overview	• 40 ps
2.Consolidation of Slab Penetrations	• 20' X 2
 Structural conditions, resolutions, recommendations 	• 20" X 2
3. Building Integrated Solar Energy System	• 10" sla
4. Peak Demand Shift and Demand Response Programs	• 5000]
5. Financing Projects through Energy Savings	• #4 reb
6. Conclusion and Questions	

Consolidation of Slab Penetrations

sf live load, 10 psf dead load

20' bays

20" columns

psi concrete (125 psf dl)

Dar

Creating Sustainability in Crystal City	New Use
1. Crystal Plaza II Overview	• 40 ps
2.Consolidation of Slab Penetrations	• 20' X 2
 Structural conditions, resolutions, recommendations 	• 20" X 2
3. Building Integrated Solar Energy System	• 10" sla
4. Peak Demand Shift and Demand Response Programs	• 5000]
5. Financing Projects through Energy Savings	• #4 reb
6. Conclusion and Questions	

Consolidation of Slab Penetrations

sf live load, 10 psf dead load

20' bays

20" columns

psi concrete (125 psf dl)

oar

Frame	Total Width (ft)	CS (ft)	MS (ft)	Total - Moment	CS (-M)	MS (-M)	Total + Moment	CS (+M)	MS (+M)
А	20	10	10	-132.93	-99.70	-33.23	98.75	59.25	39.50
B	10	5	5	-24.69	-24.69	0.00	/19 37	29.62	19 75
U	10		5	-66.47	-49.85	-16.62	45.57	29.02	13.75
С	20	10	10	-132.93	-99.70	-33.23	98.75	59.25	39.50
D	10	5	5	-24.69	-24.69	0.00	49.37	29.62	19.75
	10			-66.47	-49.85	-16.62			

For Frame A Design Reinforcement For CS (Will Use #4 Bars)							
Item	Description	S	pan				
		M⁻	M+				
1	M _u (ft-Kip)	-99.70	59.25				
2	b (in)	100	100				
3	d(in)	7.975	7.975				
4	$M_n = M_u/0.9$ (ft-Kip)	-110.777	65.83296				
5	$R = M_n/bd^2$	209.0104	124.2119				
6	ρ [Table A.5a]	0.0036	0.0021				
7	Ast = ρbd (in²)	2.871	1.67475				
8	A _{st,min} = 0.002bt	2	2				
9	N = #7 or #8 (Greater)/Abar	14.355	8.37375				
10	Nmin = width _{strip} /2t	6	6				
* # Bar	* # Bars used is greater value of 9 or 10						

Creating Sustainability in Crystal City

1. Crystal Plaza II Overview

2.Consolidation of Slab Penetrations

- Structural conditions, resolutions, recommendations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

For Frame A Design Reinforcement For MS (Will Use #4 Bars)						
ltem	Description	Span				
		M⁻	M+			
1	M _u (ft-Kip)	-33.23	39.50			
2	b (in)	100	100			
3	d(in)	7.975	7.975			
4	$M_n = M_u/0.9$ (ft-Kip)	-36.9255	43.88864			
5	$R = M_n/bd^2$	69.67015	82.80794			
6	ρ [Table A.5a]	0.0012	0.0014			
7	Ast = ρ bd (in ²)	0.957	1.1165			
8	A _{st,min} = 0.002bt	2	2			
9	N = #7 or #8 (Greater)/Abar	4.785	5.5825			
10	Nmin = width _{strip} /2t	6	6			
* # Bar	s used is greater value of 9 or 1	.0				

Frame	Total Width (ft)	CS (ft)	MS (ft)	Total - Moment	CS (-M)	MS (-M)	Total + Moment	CS (+M)	MS (+M)				
Α	20	10	10	-132.93	-99.70	-33.23	98.75	59.25	39.50				
в	10	10	10	10	10	5	5	-24.69	-24.69	0.00	10.37	29.62	10 75
	10	5	J	-66.47	-49.85	-16.62	+5.57	29.02	19.75				
С	20	10	10	-132.93	-99.70	-33.23	98.75	59.25	39.50				
D	10	F	5 5	-24.69	-24.69	0.00	49.37	29.62	19.75				
	10	5		-66.47	-49.85	-16.62							

For Frame A Design Reinforcement For CS (Will Use #4 Bars)							
Item	Description	S	pan				
		M⁻	M+				
1	M _u (ft-Kip)	-99.70	59.25				
2	b (in)	100	100				
3	d(in)	7.975	7.975				
4	$M_n = M_u/0.9$ (ft-Kip)	-110.777	65.83296				
5	$R = M_n/bd^2$	209.0104	124.2119				
6	ρ [Table A.5a]	0.0036	0.0021				
7	Ast = ρbd (in²)	2.871	1.67475				
8	A _{st,min} = 0.002bt	2	2				
9	N = #7 or #8 (Greater)/Abar	14.355	8.37375				
10	Nmin = width _{strip} /2t	6	6				
* # Bar	* # Bars used is greater value of 9 or 10						

Creating Sustainability in Crystal City

1. Crystal Plaza II Overview

2.Consolidation of Slab Penetrations

- Structural conditions, resolutions, recommendations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

For Frame A Design Reinforcement For MS (Will Use #4 Bars)						
Item	Description	Span				
		M⁻	M+			
1	M _u (ft-Kip)	-33.23	39.50			
2	b (in)	100	100			
3	d(in)	7.975	7.975			
4	$M_n = M_u/0.9$ (ft-Kip)	-36.9255	43.88864			
5	$R = M_n/bd^2$	69.67015	82.80794			
6	ρ [Table A.5a]	0.0012	0.0014			
7	Ast = ρ bd (in ²)	0.957	1.1165			
8	A _{st,min} = 0.002bt	2	2			
9	N = #7 or #8 (Greater)/Abar	4.785	5.5825			
10	Nmin = width _{strip} /2t	6	6			
* # Bars used is greater value of 9 or 10						

Frame Type	Direction	Strip	Bars Required Existing	Bars Required New	Bars from Existing Drawing	# Bars R	emovable
						From Charts	From Drawing
А	NS	Column	20	15	12	5	-3
А	NS	Middle	8	6	9	2	3
С	EW	Column	20	15	14	5	-1
С	EW	Middle	8	6	9	2	3

Creating Sustainability in Crystal City

1. Crystal Plaza II Overview

2.Consolidation of Slab Penetrations

- Structural conditions, resolutions, recommendations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Frame Type	Direction	Strip	Bars Required Existing	Bars Required New	Bars from Existing Drawing	# Bars R	emovable
						From Charts	From Drawing
А	NS	Column	20	15	12	5	-3
A	NS	Middle	8	6	9	2	3
С	EW	Column	20	15	14	5	-1
С	EW	Middle	8	6	9	2	3

Creating Sustainability in Crystal City

1. Crystal Plaza II Overview

2. Consolidation of Slab Penetrations

- Structural conditions, resolutions, recommendations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Consolidation of Slab Penetrations

• Summary

- Use preconstruction structural analysis to locate problematic areas
- requirements
- Reducing marginal areas
 - \$3,000 material savings
- Overall process understanding and utilizing knowledge of problem areas
 - Save about 5 weeks
 - Eliminate rework, save \$55,000

• In marginal areas, consider minor redesign to lower reinforcing

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations

3.Building Integrated Solar Energy System

- Design considerations, technology, energy results
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

- Background
 - Rising energy cost
 - Non typical façade
 - Building Integrated Photovoltaics (BIPV)

Building Integrated Solar Energy Systems

Problem Statement

- Use non typical façade to advantage
- Offset energy needs through BIPV
- Minimize schedule increase

• Goal

• Develop a BIPV system that could be implemented to save energy demand required and provide a schematic for the required components.

Creating Sustainability in Crystal City	• Products
1. Crystal Plaza II Overview	• RIPV
2. Consolidation of Slab Penetrations	• Integra
3.Building Integrated Solar Energy System	• Typica
 Design considerations, technology, energy results 	• Cl
4. Peak Demand Shift and Demand Response Programs	• M
5. Financing Projects through Energy Savings	• 3-5 W/
6. Conclusion and Questions	

Building Integrated Solar Energy Systems

and Design

- rated into building component, such as curtain wall or shingles ally thin film
- heaper
- lass production
- /sf production (WBDG)

- Case Studies
 - 4 Times Square, NYC
 - Solaire, NYC

Replaces spandrel panels **§3kWesystem**pper floors Dressigneed 204 provide 5% €akWosysteanbout 20 units Powers about 5 offices

Creating Sustainability in Crystal City	• Droduo
	• Flouuc
1. Crystal Plaza II Overview	• Model
2. Consolidation of Slab Penetrations	• Var
3.Building Integrated Solar Energy System	• Tra
 Design considerations, technology, energy results 	• Car
4. Peak Demand Shift and Demand Response Programs	• \$8,
5. Financing Projects through Energy Savings	
6. Conclusion and Questions	

Building Integrated Solar Energy Systems

cts and Design

- led after SeeThru system by SUNTECH
- rious, custom sizes
- ansparency 1-10%
- n easily match non-BIPV glazing 8,500/installed kW

Case Studies

- 4 Times Square, NYC
- Solaire, NYC

Replaces spandrel panels 33kW system Designed to provide 5% Can power about 20 units

Creating Sustainability in Crystal City	• Droduo
	• Flouuc
1. Crystal Plaza II Overview	• Model
2. Consolidation of Slab Penetrations	• Var
3.Building Integrated Solar Energy System	• Tra
 Design considerations, technology, energy results 	• Car
4. Peak Demand Shift and Demand Response Programs	• \$8,
5. Financing Projects through Energy Savings	
6. Conclusion and Questions	

Building Integrated Solar Energy Systems

cts and Design

- led after SeeThru system by SUNTECH
- rious, custom sizes
- ansparency 1-10%
- n easily match non-BIPV glazing 8,500/installed kW

Shadow Study

- Uses Google SketchUp
- No shading above 12th floor from surroundings
- Even North façade receives sun

Building Integrated Solar Energy Systems

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations

3.Building Integrated Solar Energy System

- Design considerations, technology, energy results
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

		Month										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Service	\$1,862	\$1,862	\$1,862	\$1,862	\$1,862	\$1,862	\$1,862	\$1,862	\$1,862	\$1,862	\$1,862	\$1,862
Charge												
Dist	\$8,523	\$7,699	\$8,523	\$8,248	\$8,523	\$8,248	\$8,523	\$8,523	\$8,248	\$8,523	\$8,248	\$8,523
Charge												
Supply	\$21,667	\$19,571	\$21,667	\$20,968	\$21,667	\$39,559	\$40,878	\$40,878	\$39,559	\$21,667	\$20,968	\$21,667
Charge												
Total	\$32,052	\$29,132	\$32 <i>,</i> 052	\$31,079	\$32,052	\$49,669	\$51,263	\$51,263	\$49,669	\$32,052	\$31,079	\$32,052
Total/	\$120	\$110	\$120	\$117	\$120	\$187	\$193	\$193	\$187	\$120	\$117	\$120
unit												

Production Analysis

- Dominion of Virginia Residential Schedule 1
- 120/240V system demand of 1513 kW
- Adjusted demand in 908 kW
- Daily usage about 21,800 kWh
 - About 80 kWh/unit

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
 - Design considerations, technology, energy results
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Building Integrated Solar Energy Systems

South Façade Analysis

Location	Area (sq	Area (sq	Efficiency	Efficiency
	meters)	feet)	Material	Orientation
South	1,655.38	17,818.51	7.0%	67.0%

						South Fa	çade						
						Sun Ho	ours(kWh/m2	2/day)					
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Yr Avg
	3.4	3.7	3.5	3.1	2.6	2.5	2.6	2.9	3.3	3.7	3.3	3	3.13
Days	31	28	31	30	31	30	31	31	30	31	30	31	365
kWh/mon	8182.97	8043.23	8423.65	7220.27	6257.57	5822.80	6257.57	6979.60	7686.09	8905.00	7686.09	7220.27	7390.43
Monthly kWh	675,818.35	610,416.58	675,818.35	654,017.76	675,818.35	654,017.76	675,818.35	675,818.35	654,017.76	675,818.35	654,017.76	675,818.35	
Monthly kWh after Solar	667,635.38	602,373.35	667,394.70	646,797.49	669,560.78	648,194.96	669,560.78	668,838.76	646,331.67	666,913.35	646,331.67	668,598.08	7,868,530.97
Monthly Bill w/o solar	\$32,052.02	\$29,131.83	\$32,052.02	\$31,078.62	\$32,052.02	\$49,669.20	\$51,263.04	\$51,263.04	\$49,669.20	\$32,052.02	\$31,078.62	\$32,052.02	453413.63
Bill/unit	\$120.50	\$109.52	\$120.50	\$116.84	\$120.50	\$186.73	\$192.72	\$192.72	\$186.73	\$120.50	\$116.84	\$120.50	
Monthly Bill w/solar	\$31,686.65	\$28,772.70	\$31,675.90	\$30,756.24	\$31,772.62	\$49,243.49	\$50,805.55	\$50,752.76	\$49,107.27	\$31,654.41	\$30,735.44	\$31,729.63	448692.65
Bill/unit	\$119.12	\$108.17	\$119.08	\$115.62	\$119.45	\$185.13	\$191.00	\$190.80	\$184.61	\$119.00	\$115.55	\$119.28	
													Total
Savings	\$365.37	\$359.13	\$376.12	\$322.39	\$279.40	\$425.70	\$457.49	\$510.28	\$561.93	\$397.61	\$343.18	\$322.39	\$4,720.98

6. Conclusion and Questions

Building Integrated Solar Energy Systems

	Efficiency of	kWh/Year	Cost/kW	Cost of	Payback
	Grid System		Installed	System	
11	0.90	79,816	\$8,500.00	\$757,286	160.41

Total yearly savings of \$4,720 (79,800 kWh at \$0.06/kWh)

Location	Area (sq	Area (sq	Efficiency	Efficiency
	meters)	feet)	Material	Orientation
South	1,655.38	17,818.51	7.0%	67.0%

						South Fa	çade						
						Sun Ho	urs(kWh/m2	2/day)					
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Yr Avg
	3.4	3.7	3.5	3.1	2.6	2.5	2.6	2.9	3.3	3.7	3.3	3	3.13
days	31	28	31	30	31	30	31	31	30	31	30	31	365
kWh/mon	8182.97	8043.23	8423.65	7220.27	6257.57	5822.80	6257.57	6979.60	7686.09	8905.00	7686.09	7220.27	7390.43
Monthly kWh	675,818.35	610,416.58	675,818.35	654,017.76	675,818.35	654,017.76	675,818.35	675,818.35	654,017.76	675,818.35	654,017.76	675,818.35	
Monthly kWh after Solar	667,635.38	602,373.35	667,394.70	646,797.49	669,560.78	648,194.96	669,560.78	668,838.76	646,331.67	666,913.35	646,331.67	668,598.08	7,868,530.97
Monthly Bill w/o solar	\$32,052.02	\$29,131.83	\$32,052.02	\$31,078.62	\$32,052.02	\$49,669.20	\$51,263.04	\$51,263.04	\$49,669.20	\$32,052.02	\$31,078.62	\$32,052.02	453413.63
Bill/unit	\$120.50	\$109.52	\$120.50	\$116.84	\$120.50	\$186.73	\$192.72	\$192.72	\$186.73	\$120.50	\$116.84	\$120.50	
Monthly Bill w/solar	\$31,686.65	\$28,772.70	\$31,675.90	\$30,756.24	\$31,772.62	\$49,243.49	\$50,805.55	\$50,752.76	\$49,107.27	\$31,654.41	\$30,735.44	\$31,729.63	448692.65
Bill/unit	\$119.12	\$108.17	\$119.08	\$115.62	\$119.45	\$185.13	\$191.00	\$190.80	\$184.61	\$119.00	\$115.55	\$119.28	
													Total
Savings	\$365.37	\$359.13	\$376.12	\$322.39	\$279.40	\$425.70	\$457.49	\$510.28	\$561.93	\$397.61	\$343.18	\$322.39	\$4,720.98

• South, East, & West Façade Analysis

al /h	Efficiency of Grid System	kWh/Year	Cost/kW Installed	Cost of System	Payback
85.11	0.90	79,816	\$8,500.00	\$757,286	
24.42	0.90	35,391	\$8,500.00	\$424,493	
24.42	0.90	35,391	\$8,500.00	\$424,493	
			Total	\$1,606,273	180.32

Total yearly savings of \$9,000 (150,600 kWh at \$0.06/kWh)

Location	Area (sq meters)	Area (sq feet)	Efficiency	Efficiency
			Material	Orientation
South	1,655.38	17,818.51	7.0%	67.0%
				/
East	927.92	9,988.08	7.0%	53.0%

Savings

🛛 Savings

al kWh	Efficiency of	kWh/Year	Cost/kW	Cost of	Payback
	Grid System		Installed	System	
685.11	0.90	79,816	\$8,500.00	\$757,286	
324.42	0.90	35,391	\$8,500.00	\$424,493	
324.42	0.90	35,391	\$8,500.00	\$424,493	
317.53	0.90	22,785	\$8,500.00	\$757.286	
			Total	\$2,363,559	223.39

Total yearly savings of \$10,380 (173,000 kWh at \$0.06/kWh)

Location	Area (sq meters)	Area (sq feet)	Efficiency	Efficiency
			Material	Orientation
South	1,655.38	17,818.51	7.0%	67.0%
East	927.92	9,988.08	7.0%	53.0%
West	927.92	9,988.08	7.0%	53.0%
North	1,655.38	17,818.51	7.0%	25.0%

Savings

Building Integrated Solar Energy Systems

al kWh	Efficiency of	kWh/Year	Cost/kW	Cost of	Payback
	Grid System		Installed	System	
685.11	0.90	79,816	\$8,500.00	\$757,286	
324.42	0.90	35,391	\$8,500.00	\$424,493	
324.42	0.90	35,391	\$8,500.00	\$424,493	
317.53	0.90	22,785	\$8,500.00	\$757.286	
			Total	\$2,363,559	223.39

Total yearly savings of \$10,380 (173,000 kWh at \$0.06/kWh)

Creating Sustainability in Crystal City	• Inverter
1. Crystal Plaza II Overview	• Panel
2. Consolidation of Slab Penetrations	• 40 sf, 1
3.Building Integrated Solar Energy System	• 60 V _{oc}
 Design considerations, technology, energy results 	South
4. Peak Demand Shift and Demand Response Programs	• 1,5
5. Financing Projects through Energy Savings	• Inverter
6. Conclusion and Questions	• Xantre
	• Max V

ex GT5.0 or of 600 V • Need 3 inverters per floor • 27 overall for south façade

Christopher R. Stultz CONSTRUCTION MANAGEMENT

Building Integrated Solar Energy Systems

- produces about 200 W
- façade, single floor $320 V_{oc}$ (60 V_{oc} x 22 panels)

Xantrex[™] GT Series Grid Tie Solar Inverters

Electrical Specifications - Output			
Models	GT	5.0	
Maximum AC power output	5000 W	4500 W	
AC output voltage (nominal)	240 V	208 V	
AC output voltage range			
AC frequency (nominal)			
AC frequency range			
Maximum continuous output current	21 A	22 A	
Maximum output over-current protection	30	A	
Maximum utility backfeed current			
Total harmonic distortion (THD)			
Power factor			
Utility monitoring, islanding protection			
Output characteristics			
Output current waveform			

Electrical Specifications - Input		
Maximum array open-circuit voltage		
MPPT voltage range (CEC & CSA)	240 - 5	550 Vdc
MPPT operating range	235 - 5	550 Vdc
Maximum input current	22.0 Adc	20.0 Adc
Maximum array short-circuit current		
Reverse-polarity protection		
Ground-fault protection		
Maximum inverter efficiency	95.9%	95.5%
CEC efficiency	95.5%	95.0%
	1	

• Wire

- NEC
- Panel to
 - AWG
- Inverter
 - AWG
- Controll

	Teo	hnical sp:	ecificati	ons				
re	Electric	al data						
NEC	Output pow Max power o Max power o	er 42.0W voltage 59.6V current 0.705A	50.0₩ 66.0¥ 0.758A	52.0₩ 68.0¥ 0.765A				
Panel to Inverter	Short circuit	current 0.972A	91.8V 1.09A	1,14A				
• AWG 14								
nverter to Contro	ller							
• AWG 10								
Controller to Electrical Panel								
Controller to Elect	rical Par	nel						
Controller to Elect • AWG 3	rical Par	nel Short Circuit Amp	# of Panels in	Total				
Controller to Elect • AWG 3	rical Par Inverter	nel Short Circuit Amp PV	# of Panels in Series	Total Amp				
Controller to Elect • AWG 3	rical Par Inverter	nel Short Circuit Amp PV 1.14	# of Panels in Series 7	Total Amp 7.98				
Controller to Elect • AWG 3	rical Par Inverter 1 2	nel Short Circuit Amp PV 1.14 1.14	# of Panels in Series 7 7 7	Total Amp 7.98 7.98				

Creating Sustainability in Crystal City
1. Crystal Plaza II Overview
2. Consolidation of Slab Penetrations
3. Building Integrated Solar Energy System
 Design considerations, technology, energy results
4. Peak Demand Shift and Demand Response Programs
5. Financing Projects through Energy Savings
6. Conclusion and Questions

- Summary
 - Generating capabilities
 - Best scenario is South, East, and West facades
 - Large capital cost
 - Long payback
 - Not feasible without rebates, incentives, and tax credits

Building Integrated Solar Energy Systems

Peak Demand Shift and Demand Response

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System

4.Peak Demand Shift and Demand Response Programs

- Background, local programs, generator use, results
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

• Background

- Rising energy cost
- Efficient systems
- Utilization of generation equipment

• Problem

- Energy peaks, costly
- Better use of generation equipment
- Goal
 - Identify local programs for demand response • Evaluate use of generator to shave demand

Peak Demand Shift and Demand Response

Creating Sustainability in Crystal City	• Pool De
1. Crystal Plaza II Overview	
2. Consolidation of Slab Penetrations	• Use 45
3. Building Integrated Solar Energy System	• More II
4.Peak Demand Shift and Demand Response Programs	• Use Ins
Background, local programs, generator use, results	• Use uu
5. Financing Projects through Energy Savings	- 1102
6. Conclusion and Questions	

emand Shift

50 kW emergency generator interaction from owner with utility istalled equipment, avoid additional costs uring peak times, 6-9 am and 4-7 pm eavy elevator and mechanical use

		Fuel Use (gal/hr)			Cost/hr		Runtime till (hr)	l empty				
Power	kW	Standby	Prime	Fuel Cost/gal*	Standby	Prime	Standby	Prime				
100%	450	35	32	3.76	\$130.10	\$121.45	16.24	17.40				
75%	337.5	26	24	3.76	\$99.26	\$91.37	21.29	23.13				
50%	225	18	16	3.76	\$68.43	\$61.66	30.88	34.27				
25%	112.5	9	8	3.76	\$34.22	\$30.83	61.76	68.54				
*average	from Jan 08	-Jan 09										

Peak Demand Shift and Demand Response

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System

- Background, local programs, generator use, results
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

	Equipment Name	Туро	Sonvico	Dhaco	v	٨	ШΡ	L\\/	% usod/br	hours used	kW//br	k)A/b
L	P-5	vertical inline pump	HP Loop	3	480	155.00	125	103.09	100%	5	103.09	515.46
7	RTU-1	RTU		3	480	71.40		47.49	60%	5	28.49	142.47
	RTU-2	RTU		3	480	71.40		47.49	60%	5	28.49	142.47
	RTU-3	RTU		3	480	71.40		47.49	60%	5	28.49	142.47
		RTH		2	480	71 /0		17 19	60%	ς	28/10	142 47
	CT-1	cooling tower fan	cooling tower	3	480	56.07	50	37.29	50%	5	18.65	93.23
	CT-2	cooling tower fan	cooling tower	3	480	56.07	50	37.29	50%	5	18.65	93.23
	Р-3	Double Suction	cooling tower	3	480	52.00	40	34.59	50%	5	17.29	86.46
	P-1	vertical inline pump	cooling tower	3	480	40.00	30	26.60	50%	5	13.30	66.51
ſ	Elevator 1			3	480	29.00	26	19.29	90%	5	17.36	86.80
	Elevator 2			3	480	29.00	26	19.29	90%	5	17.36	86.80
l	Elevator 3			3	480	29.00	26	19.29	90%	5	17.36	86.80
	RTU-5	RTU		3	480	17.60		11.71	60%	5	7.02	35.12

		Fuel Use (gal/hr)		(gal/hr) Cost/hr		Runtime til (hr)	l empty	
Power	kW	Standby	Prime	Fuel Cost/gal*	Standby	Prime	Standby	Prime
100%	450	35	32	3.76	\$130.10	\$121.45	16.24	17.40
75%	337.5	26	24	3.76	\$99.26	\$91.37	21.29	23.13
50%	225	18	16	3.76	\$68.43	\$61.66	30.88	34.27
25%	112.5	9	8	3.76	\$34.22	\$30.83	61.76	68.54
*average	from Jan 08	-Jan 09						

Peak Demand Shift and Demand Response

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System

- Background, local programs, generator use, results
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Distribution Service	Charg
cost per kw	kw
1	
Basic Customer Char	ge
Supply Service Char	ges
On Peak Supply Dem	and C
cost per kw	kw
12.003	
11.715	
Off Peak Supply Dem	nand C
0.632	
Supply Adjustment	Dema
0.421	
On peak kWh	
0.404	
Off peak kWh	
0.272	
Tot	al:

ge	
	cost
1830	\$1,830.00
	\$127.60
Charge	
	çost
1098	\$13,179.29
1098	\$12,863.07
Charges	
1098	\$693.94
nd Charge	
1830	\$770.43
428220	\$173,000.88
362340	\$98,556.48
	\$301,021.69

		Fuel Use (gal/hr)		Cost/hr		Runtime til (hr)	l empty	
Power	kW	Standby	Prime	Fuel Cost/gal*	Standby	Prime	Standby	Prime
100%	450	35	32	3.76	\$130.10	\$121.45	16.24	17.40
75%	337.5	26	24	3.76	\$99.26	\$91.37	21.29	23.13
50%	225	18	16	3.76	\$68.43	\$61.66	30.88	34.27
25%	112.5	9	8	3.76	\$34.22	\$30.83	61.76	68.54
*average	from Jan 08	-Jan 09						

Peak Demand Shift and Demand Response

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System

- Background, local programs, generator use, results
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Distribution Service Charge	
cost per kw	kw
1	
Basic Customer Cha	rge
Supply Service Cha	rges
On Peak Supply Der	nand Cl
cost per kw	lan
12.003	
11.715	
Off Peak Supply Der	nand Cl
0.632	
Supply Adjustment	Demar
0.421	
On peak kWh	
0.404	
Off peak kWh	
0.272	
То	tal

ge		
	cost	
1830	\$1,830.00	
	\$127.60	
Charge		
	cost	
1098	\$13,179.29	
1002	\$12,863.07	
Charges		
1098	\$693.94	
and Charge		
1830	\$770.43	
428220	\$173,000.88	
362340	\$98,556.48	
	4	
	\$301,021.69	

Distribution Service Charge		Difference	
cost per kw	kw	cost	
1	1430	\$1,430.00	\$400.00
Basic Customer Char	ge	\$127.60	
Supply Service Charg	es		
On Peak Supply Dem	and Charge		
cost per kw	kw	cost	
12.003	698	\$8,378.09	\$4,801.20
11.715	698	\$8,177.07	\$4,686.00
Off Peak Supply Dem	and Charges		
0.632	858	\$542.26	\$151.68
Supply Adjustment D	emand Charge		
0.421	1430	\$602.03	\$168.40
On peak kWh			
0.404	371865.56	\$150,233.69	\$22,767.19
Off peak kWh			
0.272	362340.00	\$98,556.48	
To	tal	\$268,047.22	\$32,974.47

Тс	otal	\$32,974.47
	Fuel Cost	\$17,295.00
	Savings	\$15,679.47

Peak Demand Shift and Demand Response

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System

- Background, local programs, generator use, results
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

- Summary
 - Suggest demand response due to net metering issues
 - Evaluate on small scale, mandatory vs. volunteer • Saving on demand creates large savings

 - Not most sustainable way to curtail loads

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs

5. Financing Projects through Energy Savings

- Goals, incentives/rebates
- 6. Conclusion and Questions

- Background
 - Financing projects is hard, especially in today's economy
 - Use savings to help finance
 - Performance contractors
 - Guaranteed savings
 - Unique marketing approach to owner?
 - Rebates, Incentives, and Tax Credits
 - Critical Issue

Financing Projects through Energy Savings

- Problem Statement
 - Availability of programs to assist in sustainable and energy saving endeavors
 - Move towards renovations for facility savings

• Goal

can create a unique marketing tool to assist in financing.

• Evaluate programs for application to Crystal Plaza II, especially in the areas of previous analyses, and show how these systems

Creating Sustainability in Crystal City	Programs
1. Crystal Plaza II Overview	Arlington
2. Consolidation of Slab Penetrations	Based of
3. Building Integrated Solar Energy System	• Grants
4. Peak Demand Shift and Demand Response Programs	• 0.1
5. Financing Projects through Energy Savings	• 0.2
 Goals, incentives/rebates 	• 0.3
6. Conclusion and Questions	Green I
	• \$o
	Applica

• Saves \$9,750 from contribution, no effect of FAR

Financing Projects through Energy Savings

- County Green Building Incentive Program on USGBC's LEED ratings
- density and height bonuses
- 15 increase for Certified
- 25 increase for Silver
- 35 increase for Gold/Platinum
- Building Fund created for education of developers
- 0.03/sf mandatory contribution for non-LEED buildings
- ation at Crystal Plaza II

- TVA Green Power Switch Generation Partners
 - Limited to TVA service area
 - Green energy produced by participant is bought by TVA and used in their green pricing program for customers
 - \$0.20/kWh compensation on 10 year contract
 - Application at Crystal Plaza II
 - Not applicable, outside service area
 - Suggest program to local utility and negotiate rate/contract

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- **5. Financing Projects through Energy Savings**
 - Goals, incentives/rebates
- 6. Conclusion and Questions

South Façade Cost

Financing Projects through Energy Savings

• South Façade BIPV- \$757,286

- Modified Accelerated Cost Recovery System (MARCS)
 - Allows for solar to depreciate over 5 years
 - in Feb 2008
- Business Energy Investment Tax Credit (ITC)
 - Tax credit for 30% of solar, with no limit

• Bonus of 50% depreciation as part of Economic Stimulus Act

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- **5. Financing Projects through Energy Savings**
 - Goals, incentives/rebates
- 6. Conclusion and Questions

• Application

South Façade Cost

Financing Projects through Energy Savings

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- **5. Financing Projects through Energy Savings**
 - Goals, incentives/rebates
- 6. Conclusion and Questions

• Application

Financing Projects through Energy Savings

- Crystal Plaza II, \$70,000,000 on 20 year loan at 6.5%
 - \$6,352,950/year or \$529,412/month
- Use energy savings to help finance
 - Demand response- \$8,000
 - Net metering "green" power- \$16,000 (assuming TVA program)
 - Demand shave- \$180,000
 - Total- \$204,000
- Now, \$6,148,950/year or \$512,413 (basic analysis)
 - PW analysis shows savings of \$3,035,000 over life of loan at 3% inflation rate
 - Saves 4.34% on loan

Financing Projects through Energy Savings

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs

5. Financing Projects through Energy Savings

- Goals, incentives/rebates
- 6. Conclusion and Questions

• Summary

- Using incentives, rebates, and tax credits BIPV becomes feasible
- Basic analysis shows a savings of about 4% on loan
 - Market strategy to owner?
 - Higher returns with efficient systems or more programs
- Owner had interest in "bundled" packages that included rebates, incentives, and credits that could help bottom line and use green/sustainable measures

- Crystal Plaza II, \$70,000,000 on 20 year loan at 6.5%
 - \$6,352,950/year or \$529,412/month
- Use energy savings to help finance
 - Demand response- \$8,000
 - Net metering "green" power- \$16,000 (assuming TVA program)
 - Demand shave- \$180,000
 - Total- \$204,000
- Now, \$6,148,950/year or \$512,413 (basic analysis)
 - PW analysis shows savings of \$3,035,000 over life of loan at 3% inflation rate
 - Saves 4.34% on loan

Conclusions and Questions

Creating Sustainability in Crystal City 1. Crystal Plaza II Overview 2. Consolidation of Slab Penetrations

- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- **6.Conclusion and Questions**

- Summary
 - - areas

 Consolidation of Slab Penetrations • Use structural analysis tool to locate problematic and marginal

• Savings in rework of \$55,000, and over \$3,000 in material Building Integrated Solar Energy System • Best case scenario is South, East, and West facades • Feasible with rebates, incentives, and tax credits Peak Demand Shift and Demand Response • Demand response better program to start with • Peak demand shift has higher return, but is not as sustainable

• Acknowledgements

Balfour Beatty Construction Others Will Siegel

TJ Sawner Sean Graham Keith Dugan John Garvey Erica Lazzaro Dave Laib Steve Tapparo Vornado/Charles E. Smith Michael Harrington

Richard Smith

Greg Lok, CLT Arif Mahmood, TCE

Tim Tarr, GHT Andy Lau, Penn State University Dr. David Riley, Penn State University PACE Industry Members Joseph Wilcher Marissa Gesell

• Questions?

Creating Sustainability in Crystal City

1. Crystal Plaza II Overview

- Project background, challenges, site, and team
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Project Details

Crystal Plaza II Overview

Demolition •Elevators/Stairs

Cast in Place Concrete •Post tensioned •Crane and Bucket •200 CY/pour, ~5 day floor cycle •Two mixes

Electrical •19 meter centers •Bus duct •1514 kW demand 120/208V •1831 kW demand 277/480V

Mechanical

- •4 RTU for fresh air
- •Individual Water source heat pumps
- •(2) 400 t cooling towers
- •(4) Natural gas fired boilers

Curtain Wall

- •Unitized
- •Low-e glass
- •Large risk

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
 - Project background, challenges, site, and team
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Crystal Plaza II Overview

Creating Sustainability in Crystal City

1. Crystal Plaza II Overview

- Project background, challenges, site, and team
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Creating Sustainability in Crystal City

1. Crystal Plaza II Overview

- Project background, challenges, site, and team
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

- Cost
- The following is a breakdown of specific building systems in the Crystal Plaza II project. Each category is representative of a specification division and other items from varying divisions have been included as noted.
 - Mechanical System Cost: \$13 Million
 - Mechanical System Cost/SF: \$40/SF
 - Electrical System Cost: \$7.5 Million
 - Electrical System Cost/SF: \$23.08/SF
 - Structural System Cost (Concrete only): \$4.1 Million
 - Structural System Cost/SF: \$12.62/SF
 - Curtain Wall System (As part of Doors/Windows): \$11.2 Million
 - Curtain Wall System Cost/SF: \$34.46/SF

- General Conditions
 - Grand Total \$3,095,115.25

- Limited/restricted
- Terms and Conditions for net metering, it is available to "customer-generator" using a "renewable energy facility" for the first 0.2% of Company's North Carolina jurisdictional peak load during the previous year.
- 1. Alternating current capacity of no more than 100 kW for nonresidential customers
- 2. Its total fuel source is solar PV, wind power, micro-hydro, or biomass
- 3. Is for the customer-generator's use and not for sale to a third party
- 4. Is interconnected and operated in parallel with the electric distribution system provided by the company (Virginia Electric and Power Company, 2006)

Dominion of Virginia does offer net metering,

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations

3.Building Integrated Solar Energy System

- Design considerations, technology, energy results
- 4. Peak Demand Shift and Demand Response Programs
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Building Integrated Solar Energy Systems

- Shadow Study
 - Uses Google SketchUp
 - No shading above 12th floor from surroundings
 - Even North façade receives sun

Building Integrated Solar Energy Systems

• $E_{sol} = I_t A \eta t e$

- $I_t = long$ -term average solar per day per unit area at specific tilt and orientation from insolation table (W/m^2-day)
- A = total area receiving sun
- η = annual efficiency of converting sunlight to useful energy

• e= orientation efficiency

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System

4.Peak Demand Shift and Demand Response Programs

- Background, local programs, generator use, results
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Demand Response

Peak Demand Shift and Demand Response

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System

4.Peak Demand Shift and Demand Response Programs

- Background, local programs, generator use, results
- 5. Financing Projects through Energy Savings
- 6. Conclusion and Questions

Demand Response

Peak Demand Shift and Demand Response

Peak Demand Shift and Demand Response

Creating Sustainability in Crystal City	Demand H
1. Crystal Plaza II Overview	 EnergyCor
2. Consolidation of Slab Penetrations	EventCe
3. Building Integrated Solar Energy System	• Res
4.Peak Demand Shift and Demand Response Programs	• Co
Background, local programs, generator use, results	FlexCor
5. Financing Projects through Energy Savings	• Pai
6. Conclusion and Questions	• Fee

Response

- nnect
- Connect
- eservation Fee
- ompensation for curtailed energy
- nnect
- aid wholesale price according to PJM
- ee removed by EnergyConnect for service

CALCULATE N	IY POTENTIAL REVENUE
State [Virginia 💌
Utility [Dominion Virginia Power 💌 ?
Energy Rate: [6 cents/kWh ?
Peak Demand [1098 kW ?
Curtailment [Somewhat Flexible • ?
Capability	Submit

Potential Revenue \$8,138

Financing Projects through Energy Savings

Creating Sustainability in Crystal City

- 1. Crystal Plaza II Overview
- 2. Consolidation of Slab Penetrations
- 3. Building Integrated Solar Energy System
- 4. Peak Demand Shift and Demand Response Programs

5. Financing Projects through Energy Savings

- Goals, incentives/rebates
- 6. Conclusion and Questions

Programs

- Local Property Tax Assessment for Energy Efficient Buildings
 - Comprehensive, whole building program
 - Evaluates property tax at reduced rate
 - Must exceed the energy efficiency standards of VA Uniform Building Code by 20%, or meet standards in Green Globes, LEED, or the EarthCraft program
- Application at Crystal Plaza II
 - Qualifies for program if offered by Arlington County
 - No response from program without tax information, withheld by owner

- Modified Accelerated Cost Recovery System (MARCS) • Allows for solar to depreciate over 5 years • Bonus of 50% depreciation as part of Economic Stimulus Act

 - in Feb 2008
- Tax credit for 30% of solar, with no limit • Alternative to ITC, allowing for 30% of basis property for solar
- Business Energy Investment Tax Credit (ITC) • U.S. Department of Treasury renewable Energy Grants
- with no limit

